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PLASTIC DEFORMATIONS OF A CYLINDRICAL SHELL UNDER THE 

ACTION OF A PLANAR EXPLOSION WAVE 

R. G. Yakupov UDC 539.374 

A thin-walled circular cylindrical shell of infinite length is located in the ground. 
At a specified distance from the shell a planar charge of explosive material, of infinite 
length along the direction of the cylinder axis, explodes, and a planar plastic shock wave 
develops in the medium. The wave front is parallel to the cylinder directrix, and the wave 
parameters are known. It is necessary to find the residual cylinder deformations as a func- 
tion of explosio n wave pressure. 

We will locate the origin of a coordinate system y, w at the point 0 in the direction of 
the incident wave (Fig. la). We write the equations of motion of a shell element experiencing 
displacements of the order of the magnitude of the shell wall thickness in the form [I] 

T' = N~ = O, i "  + ( ( i /n )  + w',)~u + q + q~ - p H ~  = o, (1 .  ~ ) 

where T, Ny are the tangent and normal stresses in the mean surface; My, bending moment in 
the peripheral direction; R, H, radius and wall thickness of the shell; p, density of the 
material; w, radial displacement; q, ql, pressure of the wave and the surrounding medium; the 
prime denotes differentiation with respect to y, and the dot, with respect to t. 

Reflection of a planar Plastic shock wave from a planar barrier at normal incidence and 
incidence at an angle has been studied in [2, 3]. To determine the explosion wave pressure 
on the shell, we will use the results of those studies and the "isolated element principle," 
according to which an incident plane wave is reflected from a curvilinear boundary in the 
vicinity of each point just as it is reflected from a small element of a plane passing through 
the given point. We write the expression for wave pressure in the form 

q = p,~(i --  t/to) cos O, - -n /2  <~ 0 <~ ~/2, t > O, q = O, (!  . 2 )  

~/2 ~ 0 <~ - -# /2 ,  

where po = p~,(! + ~nn); pl, is the pressure on the incident wave front at the moment of 

Ufa. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 
127-132, July-August, 1982. Original article submitted June 26, 1981. 
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reflection; to is the period over which the pressure acts; n is the medium's compression 
exponent; and 0 = y/r is the angular coordinate. 

On the side opposite the incident wave, due to deformations and displacement as a rigid 
cylinder, the shell experiences a pressure which we define by [4] 

q~ = Pc + poc~w, a/2 ~< 0 ~< - -n /2 ,  q~ = O, ( 1 . 3) 
- - ~ / 2  ~ 0 ~ ~/2,  

where Pc, Oo are the yield point and density of the medium; c~ = Ei/9o; El is the plastic 
modulus. 

The total displacement of the shell is equal to the sum of the displacements of an abso- 
lutely rigid cylinder u and the displacement produced by deformation wo. Planar motion of a 
rigid cylinder under the action of a pressure wave is described by the equation 

~m0~ + q) oeo + = o. 
o 

Here we assume that the pressure Pc is uniformly distributed over the length of the semi- 

circle w = u cos e, mo = pH, ~o = Pocl. 

2. Let the shell material be ideally rigid-plastic. Below we will use a piecewise- 
linear approximation of the plasticity condition for thin-walled shells [5], shown in Fig. 2 
by the dashed line, and described by 

INv/Nol ~ t, My/Mo] ~ 1, 

where No = ~yH; Mo = ~yHU/4;Oy = 2Os//3; Os is the yield point for uniaxial deformation. 

We will consider a motion mechanism, which we will term mechanism I, in which in the 
direction of the incident wave at the points 0 = 0, • there appear three plastic joints 
(Fig. la). The segments of the envelope between the plastic joints are in a plastic state 
AD. The mean surface then experiences compression. The flow law corresponding to this 
limiting state can be written in the form 

% : ~y=--~  : 0 (Nv=--No; -- Mo~M~Mo), 
where ~y and ~y are generalized deformation velocities, corresponding to generalized stresses 

Ny and My. At the angular points A and D flow mechanisms such as ey:Xv =--i :0 and ey:• = 
(I -- %):X are also possible. 

Thus, at the limits of each segment the field of displacement velocities satisfying the 

plasticity condition and the flow law is a solution of the equation • = w" = 0 and is defined 
by 

Wo = Ci(0y + C~(t). ( 2 .  I ) 

We find the constants CI and C2 from the conditions wo = w1(y = 0), wo = 0(y = yl): 

C~ = ~ w'~ly~ ( 0 <  yi<~ y~; --y~ ~< y <~ 0), C~ = &~. 

The total velocity field is described by w = wo+ u cos O. 
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Using this stress field and flow law, we transform Eq. ( 1 . 1 )  to 

M "  - -  N o / B  -}- q -t- ql  - -  mowo = O. ( 2 . 2 )  

The solution of Eq. (2.2) must also satisfy the boundary conditions 

9I (0 ,  t ) =  M0, M ' ( 0 ,  0 = 0; ( 2 . 3 )  

M(+_01, t ) =  - - M o ,  M'(_+01,  t ) =  0. ( 2 . 4 )  

We denote by MI the bending moment in the region 0 1 ~ 0 ~ . ~ 0  ! .  Substituting in Eq .  (2.2) 
the equations (~.2), (2.1), taking q~ = 0, and satisfying conditions (2.3), we find 

M1 qa A1 moC1R 
n--- ~- = --~ + T O} + - - - V -  O~ - -  po~ (t -- cos o), (2.5) 

w h e r e  q2 = No~B; q3 = 2Mo/B~; A1 = q2 + mo62; ~ = t - -  t/t o. 

Applying to Eq. (2.5) the boundary conditions (2.4), we obtain a system of equations for 
the displacements 

~2  .. q2 ~ moO1 '" 
m=lo w l = p ~ 1 7 6  -0~' _ _ ~ w  1 = P 0 ~ s i n 0 1 _ q ~ 0 x "  ( 2 . 6 )  

I n  Eq .  ( 2 . 6 )  we s e t  wl  = t = 0 a n d  f i n d  t h e  e x p r e s s i o n s  f o r  t h e  l i m i t i n g  s t a t i c  p r e s s u r e  
corresponding to mechanism I. The limiting static pressure will be the lesser of the pres- 
sures defined by 

Ps = (qzO~ -{- 2q~)/[2 (1 - -  cos 0,)], p ,  = q20,/sin 0~. ( 2 . 7 )  

Here O s is the angular coordinate of the plastic cylinder defined by the solution of the 
equation 

0~[2(1 - -  cos O~) - -  O~ sin 0~] - -  (H/B) s in  O~ = O. 

After eliminating the acceleration from system (2.6) we find an expression for the coordinate 
81 as a function of wave pressure at the moment of reflection: 

Po = (6q3 - -  q20~)/{ 2 [3 ( t  - -  cos 0~) - -  20~ sin Ox] }. ( 2 . 8 )  

Solution 2.5) does not contradict the original assumptions as to the stress field with 
M~(O, t)~O, J#~(___01, t)~0 , whence it follows that at the initial moment it must be true that 

P o ~ P o >  P o ~ P o 2 ,  ( 2 . 9 )  

where pol = q201/(2 sin O1 - - 0 1 ) ;  Po2 = qa/cos Ol. 

We will assume that there are also formed in the lower half of the shell at points with 
coordinates ie2 joints (Fig. la), with the velocity field having the form 

( 2 . ~ o )  w = C3g + C4 + u cos  O, 

where the integration constants are equal to 

Ca = _-_4-[{v/(a--O~)R1(O 2 ~ O ~ < n ;  - - n  ~ < 0 <  02) , 

CA = - - ~ # ~ / ( ~  - -  0~) 

and are determined from the conditions wo = 0(0 = • Wo = w2(0 = • The motion de- 
scribed by Eq. (2.10) will be called mechanism Ia. Substituting in Eq. (2.2) Eqs. (1.3), 
(2.10) and taking q = 0, we perform the integration. The bending moment in the region 
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0~.~0~ --~ will be termed Mi. Applying to Eq. (2.2) the conditions Mi(• t) = Mo, M'2(• 
t) = 0, we find Mi. Then with the aid of the condition M2(• t) = --Mo, M~(• t) = 0 we 
obtain the system 

[(n - -  O~)~/3](mow~ - -  xow~) = - -q3- - [ (n  - -  0~)~'/21 X (q~ - - P ~ ) I - -  • 1 + cos 0~), ( 2 . 1 1 )  

I (~  - o~) /2  l ( ~ o g ~  - z0w'~) = - ( ~  - 0~)(~ ,  - p 3  - •  s i n  0 ,  

E l i m i n a t i n g  t h e  v e l o c i t y  and  a c c e l e r a t i o n  f r o m  Eq.  ( 2 . 1 1 )  we f i n d  an  e x p r e s s i o n  f o r  t h e  c o o r -  
d i n a t e  of the plastic joints 02.  At the initial moment we find 02 from 

tt  t? 

The c o n d i t i o n s  M~(-4-~,.t)~O, M2 (+__0~, t ) ~ 0  g i v e  i n e q u a l i t i e s  w h i c h  t a k e  on t h e  f o r m  q~ --  
Pc i> 0 at the initial moment and are always satisfied. 

3. We will consider motion of the shell, when the region I(--00~ 0 ~@0) is in a com- 
pletely plastic state A, while the region II (@0 ~-~ 0 ~ 0~,--0~ ~ @ ~--00) is in a plastic state 
AD and the velocity fields have the respective forms 

w--~ w o-~- u c o s O ,  W = C~y + C~ 2r 'ucosO,  ( 3 . 1 )  

where Cs = • [(0o -- 01)R]; Cs =--~o(0o)01/(0o -- 01); 0o = Oo(t) is the unknown angular 
coordinate of the boundary between the regions with differing plastic regimes. The motion 
described by Eq. (3.1) will be termed mechanism II. 

The equation of motion for region I has the form 

m o w  o ---- poCp COS 0 - -  q2. ( 3 . 2 )  

We n o t e  t h a t  Eq.  ( 3 . 2 )  f o l l o w s  f r o m  t h e  m o m e n t - f r e e  t h e o r y  o f  a c y l i n d r i c a l  s h e l l .  

We integrate the equation of motion of region II, substituting in Eq. (2.2) the second 
expression of Eq. (3.1) and taking ql = 0. Applying the conditions M~(+0o, t) = Mo, M~(• 
t) =--Mo, M'1(• t) = 0, M'I~(• t) = 0 to the solution, we arrive at 

q2 A 

T [I,~o (Oo1 + doWo (Oo11 = poqV~ - qd~, 

(3.3) 

where fl = 01 -- 0o; f2 = cos 0o -- cos 01 -- fl sin 0o; f3 = sin 01- sin 6o. 

The limiting static pressure and angular coordinate of the plastic joints corresponding 
to mechanism II are defined by 

P,  = (~f~ + 2q3)/2~,  Ps = ~ h / ~ ,  P,  = q2/cos 0o. 

In analogy to Eq. (2.8) we find an expression for the coordinate 0o as a function of wave 
pressure 

P0 = (q2f~ - -  6 ~ ) / ( 4 h ~  - -  6&). ( 3 . 4 )  
t l  11 

From t h e  c o n d i t i o n  M l l ( •  t ) ~ <  0 ,  M11( •  t ' ) > ~  0 we f i n d  i n e q u a l i t i e s  w h i c h  l i m i t  t h e  p r e s -  
s u r e  v a l u e  a t  t h e  moment o f  r e f l e c t i o n  

PO ~< P03, Po <~ P0~, ( 3 . 5 )  

w h e r e  poz  = (q2f~  + 6 q ~ ) / [ 2 ( 3 f 2  --  f~ cos  0 o ) ] ;  po4 = q 2 / c o s  0~.  

We c a n  d i v i d e  t h e  s h e l l  m o t i o n  i n t o  t h r e e  s t a g e s .  The f i r s t  i s  t h e  d r i v e  s t a g e ,  0 ~ < t ~ <  
t l .  A t  t h e  end  o f  t h e  f i r s t  s t a g e  t h e  d i s p l a c e m e n t  v e l o c i t y  r e a c h e s  i t s  h i g h e s t  v a l u e .  We 
d e t e r m i n e  t l  f r o m  t h e  e q u a t i o n  W o ( e , t ~ ) =  0.  The v a l u e  o f  0o i s  t i m e  i n d e p e n d e n t ,  b u t  d o e s  
d e p e n d  on  p o ,  a s  g i v e n  by  Eq.  ( 3 . 4 ) .  

The s e c o n d  s t a g e ,  t~<~t<~.  I n  t h e  s e c o n d  s t a g e  t h e  k i n e t i c  e n e r g y  and  d i s p l a c e m e n t  
r a t e  o f  t h e  p l a s t i c  z o n e  d e c r e a s e .  We f i n d  t h e  i n f l e c t i o n  a n d  t h e  a n g l e  0 o ( t )  f r o m  t h e  s o l u -  

t i o n  o f  s y s t e m  ( 3 . 2 ) ,  ( 3 . 3 )  w i t h  i n i t i a l  c o n d i t i o n s  0 o ( t ~ )  = 0o ,  w o ( 0 o ,  t )  = w o ( 0 o ,  t ~ ) ,  
Wo(0o ,  t )  = Wo(0o ,  t x ) .  The v a l u e  o f  t h e  c o o r d i n a t e  0o d e c r e a s e s  t o  z e r o .  The t i m e  t2  i s  
d e t e r m i n e d  f rom e o ( t ~ )  = 0.  

582 



p.'lO-, N/ml i ~e 
. . . .  . . . .  - - . ,  

i b i , / !  

I ,o  I 
# o  6o 8 o  e l  

!r !: ! / 

o S - - - -  _ 

0 20 40 gO 

Fig. 3. Fig. 4. 

The third stage tsetse. Analysis of this stage is analogous to that of the shell 
motion in Sec. 2. The time t3 is determined from the condition of equality to zero of the 

deflection velocity. 

Shell motion is not limited to the mechanisms considered above. Other kinematic states 
are possible, which can be studied in the same manner. We have considered additional motion 
mechanisms III and IV. In mechanism III, plastic joints appear at four diametrically opposed 
points (Fig. ]c). The shell deforms similarly to the lowest order form with elastic deflec- 
tion, and motion of four quarters rigid with respect to deflection in plastic state AD occurs. 

In the case of mechanism IV the region --8 o ~0~00 in the direction of the incident wave is 
in plastic state A, and the region ~0~/2,--~/2~0~--0~ is in plastic state AD. 

4. A shell has dimensions H = 0.015 m, R = 0.5 m, Os = 3"108 N/m 2, and is located in 
water-unsaturated sandy soil of disrupted structure with frame density of 1.7.103 kg/m 3, mois- 
ture content w ~ ~ 4-8%. The compression diagram has the form p = 3.35"i0ss 2"5 [6], where 
is the relative deformation of the soil. We take the limiting compression of the soil as 
E+ = 0.2. An explosive charge has a thickness 2a = 0.002 m, with isentropy index of the 
detonation products y = 1.25. The initial pressure in the cavern is 2"109 N/m 2. We will 

define the wave parameters as in [7]. 

From comparison with the minimum pressures Ps of all four motion mechanisms it follows 
that the smallest limiting static pressure is Ps = ]|5"10s N/m2, corresponding to mechanism 
I. Therefore in the case of static pressure action, according to kinematic theory, mechanism 

I is realized. 

With dynamic loading shell deformations commence at pressures po > Ps, where the pressure 
on the incident wave front p~, > 45-|0 s N/m 2, which corresponds to explosion distances of 8 
m or less. 

Figure 3 shows graphs of the pressures poi(i = ] -- 4)as a function of angle O~. The 
graph scale up to 0~ = 60 ~ is shown on the left, while for O~ > 60 ~ , the right-hand scale is 
valid. Curves I-3 are graphs of poi(0~), po2(01), po3(01), po~(el) = po2. The dash--dot 
curve shows the change in po with 01 according to Eq. (2.8). The horizontal dashed line is 

the pressure Ps. The joint coordinates are 0s = 44 ~ , 02 = • ~ . 

As is evident from Fig. 3, in the pressure range ps~p0~i47.105 N/m 2 inequality (2.9) 
is satisfied and mechanism I is realized. At 147 < po~ 860.]05 N/m 2 inequality (3.5) is 
satisfied and shell deformation follows mechanism II. On the side opposite the incident 
wave, mechanism Ia is realized. A curve of po(0o) is shown in Fig. 4. For the case po~ 
860"105 N/m a the angle 01 = ~/2, and the shell deforms by mechanism IV. Mechanism III is 
not realized, since the inequalities analogous to Eqs. (2.9), (3.5) are not fulfilled. 

From solution of the first equation of Eq. (2.6) we find the residual deflection, which 
at a pressure of po = ]32"I0 s N/m 2 and cI = 100 m/sec is equal to 1.64 cm. The coordinate of 
the deformation region 81 = 50 ~ , and the explosion distance is 7.5 m. 
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EQUATIONS OF ELASTOVISCOPLASTIC MEDIUM WITH 

FINITE DEFORMATIONS 

V. I. Kondaurov UDC 539.371 

In this paper, we examine the nonstationary equations of the theory of flow of finitely 
deformed elastoviscoplastic materials. We analyze two approaches to describing the kine- 
matics of such media. We study the restrictions imposed on the determining equations by the 
entropy inequality and the requirements of invariance relative to orthogonal transformations 
of the actual, unloaded and initial configurations. The complete system of equations is 
written in divergence form, which permits obtaining all allowable relations at strong dis- 
continuities. In the adiabatic approximation, the system of equations reduces to a sym- 
metrical form and we formulate sufficient conditions for hyperbolicity. 

I. Kinematics. Let ~ be the radius vector of a particle in the medium in the initial 
configuration of the body and x the actual instantaneous configuration. We shall assume that 
the initial configuration is the natural configuration [I, 2] with constant temperature O= O 0 
and density p = po = const. We shall denote by ei, e j the basis vectors of the starting and 

accompanying Lagrangian system of coordinates [I] and by e~ the basis of the spatial Carte- 
sian coordinate system, such that 

d~ = e~%~, d~ = e~kek = e~J~'~. ( 1 . 1  ) 

We shall assume that the mapping (deformation) of the starting configuration into the 
actual configuration 

x = x(~, t), ( 1 . 2 )  

where t is the time, is mutually unique and continuously differentiable the required number 
of times. For fixed t, it follows from (1.2) that 

dx = F.d~ = (~~ ~b). (e~ ') = e~ (1.3) 

where F is the tensor of the gradient of the total deformation. Equating (I.I) and (1.3) we 
see that 

e] = ~F!j, ( 1 . 4 )  
o 

i.e., the matrix F i" is the linear transformation of both d~ into dx and the basis e~ into 
"3 

the basis ~j. 

Using the definition of the velocity vector v = 3x(~, t)/3t[$ and relation (1.4), we 
obtain 

from where in view of the arbitrariness of dx follows the kinematic relation [I, 2] 
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